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ARTICLE

Incorporating the sample correlation into the testing of two 
endpoints in clinical trials
Sanat Sarkara, Dror Rom b, and Jaclyn McTague b

aDepartment of Statistical Science, Temple University, Philadelphia, USA; bLogecal Data Analytics, Wayne, 
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ABSTRACT
We introduce an improved Bonferroni method for testing two primary end-
points in clinical trial settings using a new data-adaptive critical value that 
explicitly incorporates the sample correlation coefficient. Our methodology 
is developed for the usual Student’s t-test statistics for testing the means 
under normal distributional setting with unknown population correlation 
and variances. Specifically, we construct a confidence interval for the 
unknown population correlation and show that the estimated type-1 error 
rate of the Bonferroni method with the population correlation being esti-
mated by its lower confidence limit can be bounded from above less con-
servatively than using the traditional Bonferroni upper bound. We also 
compare the new procedure with other procedures commonly used for the 
multiple testing problem addressed in this paper.
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1. Introduction

Pivotal clinical trials for new treatments that are designed to evaluate two primary efficacy endpoints 
face the so-called ‘multiplicity problem’, which, if not addressed, may cause inflation of type-1 error. 
Accordingly, regulatory agencies require that analysis plans contain a statistical methodology for type- 
1 error control. Moreover, since controlling type-1 error may also impact type-2 error (i.e., decrease 
power), regulators stress that one should examine the trade-off between the two types of error and 
carefully choose type-1 error controlling methodology. The multiplicity problem is further exacer-
bated by the inherent dependencies among various endpoints. While these dependencies can be 
qualitatively characterized in the sense that outcomes associated with the endpoints exhibit similar 
tendencies, albeit, with different magnitudes, there are situations where they can be quantitatively 
assessed from sample correlations among the examined variables.

Several statistical methodologies have been put forward to deal with the need to control type-1 error, with the aim 
of ultimately identifying at least one endpoint, and preferably both, for which the new treatment is better than the 
control. Among them, the most commonly used are the Bonferroni method for global testing and its step-down 
extension, Holm’s (1979) method, for multiple testing. Because these methods utilize the Bonferroni inequality 
that relies only on the marginal p-values, they are dependency-free, and hence can be quite conservative when the 
p-values or the corresponding test statistics are highly dependent. Šidák (1967) and Simes (1986) have introduced 
improvements of the Bonferroni method for global testing. They control the type-1 error rate under indepen-
dence and under a type of positive dependency that arises in some practical applications (Hochberg and Rom 
(1995), Samuel-Cahn (1996), Sarkar and Chang (1997), and Sarkar (1998)). Šidák’s (1967) global test has been 
used by Holland and Copenhaver (1987) to develop a step-down method, whereas Simes (1986) has been used by 
Hochberg (1988) to develop a step-up multiple testing method and by Hommel (1988) to develop a closed testing 
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method based on the ‘Closure Principle’ of Marcus et al. (1976). Gou et al. (2014) proposed a class of hybrid 
Hochberg-Hommel procedures which tend to be more powerful than either the Hochberg or Hommel procedure.

Šidák’s (1967) and Simes (1986) improved versions of the Bonferroni global test and their multiple testing 
extensions only qualitatively capture the underlying positive dependency, as they are still based on marginal 
p-values while continuing to maintain the type-1 error rate control even under such positive dependency. 
Unfortunately, they can be quite conservative, and hence can lose power, when such dependency is moderately 
high. Moreover, they can fail to control the type-1 error under negative dependency. While these two tests are 
widely used, theoretical results regarding the validity of their application have only been done in the case of 
normal statistics with certain correlation structure [(Hochberg and Rom (1995), and Samuel-Cahn (1996)], or 
t-statistics with same denominator representing an estimate of the common population standard deviations 
[Sarkar and Chang (1997), and Sarkar (1998)]. These assumptions do not hold in the two-endpoint problem 
addressed here because the endpoints almost always have different population variabilities.

Under normal distributional settings, which are most commonly used for global testing in practical 
applications and where the dependency among test statistics is parametrically represented through 
correlation coefficients, it is possible to capture the dependency quantitatively, and hence more fully 
than the Šidák’s (1967) and Simes (1986) tests, while improving the Bonferroni method. However, this 
idea of improving the Bonferroni method has so far been limited to the case where the population 
correlations are assumed known (see, e.g., Xie (2012) and the references therein). Of course, one can 
consider replacing the known correlations in these methods with their suitable estimates to make them 
fully data-adaptive, but there is no theoretical justification that these would ultimately control the type 
I error rate. With correlations being rarely known in practice, tightening the Bonferroni type-1 error 
rate control through explicit use of sample correlations and providing a theoretical justification of such 
control would be an important objective.

In this paper, we consider achieving the above-mentioned objective by considering the two-mean testing problem 
under a normal distributional setting with unknown population correlation and variances. Our goal is to test the two 
hypotheses, with the aim of rejecting at least one, and preferably both. This testing scenario commonly arises in 
pharmaceutical studies. We propose a new procedure in this setting that utilizes the Bonferroni test based on the usual 
(marginal) Student’s-t test statistics but uses a data-adaptive critical value that explicitly incorporates the sample 
correlation coefficient. The confidence interval approach of Berger and Boos (1994) is employed to make use of the 
sample correlation. More specifically, we first theoretically prove that the type-1 error rate of the Bonferroni method 
based on Student’s-t statistics (or their absolute values) with any fixed critical value is strictly decreasing in the 
unknown correlation coefficient (or its absolute value). These decreasing properties allow us to estimate the type-I 
error rates for both one- and two-sided testing problems, without relying on computations generally required in the 
application of the Berger and Boos (1994) approach. We simply are substituting the unknown correlation coefficient 
(or its absolute value) with its lower confidence limit, given a fixed confidence coefficient, into the error rate formulas. 
Bounding these estimated error rates from above by the nominal level α allows us to produce correlation-adaptive 
critical values that are smaller than the traditional Bonferroni critical values but still control the type-1 error rate. The 
fact that such adaptive Bonferroni methods can provide much tighter control of the type-1 error rate than their regular, 
non-adaptive versions over a wide range of choices for the confidence coefficient and level of significance is 
demonstrated numerically.

It is important to note that the Berger and Boos (1994) approach to estimating population 
correlation using its interval estimate in multiple testing scenarios was taken before in Tamhane 
et al. (2012). However, it was for a different problem, namely, the development of a two-stage group 
sequential design for testing primary and secondary endpoints controlling familywise error rate 
(FWER). Moreover, unlike here, they considered large-sample settings, which allowed them to 
assume the t-test statistics to be normally distributed and use large-sample confidence interval for 
the unknown correlation. Additionally, these authors only showed a directional relationship 
between the FWER and the correlation via numerical analysis as they were unable to show the 
relationship analytically.

The paper is organized as follows. Section 2 introduces our proposed ‘correlation-adaptive Bonferroni’ meth-
odologies for both one- and two-sided testing problems. The process of computing the correlation-adaptive 
critical values in these methods is described in Section 3. In Section 4, we present these critical values for a wide 
range of sample sizes, before numerically showing in Section 4 how our methods compare with the corresponding 
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traditional, non-adaptive Bonferroni methods in terms of type-1 error rate control and power. Concluding 
remarks are made in Section 5. These remarks include comments on (i) the novelty of theoretical results we 
obtain in this article towards application of the Berger and Boos (1994) approach, and (ii) possible extension of 
the proposed correlation-adaptive Bonferroni to its Holm-type stepdown analog for simultaneous testing. 
Detailed proofs of the technical results needed to develop our proposed method are provided in the Appendix 1.

2. Proposed methodologies

In our setting, a test treatment is compared to a control treatment on two outcome measures X1 and X2 
that are jointly distributed as a bivariate normal with a covariance matrix 

� ¼
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

� �

; . 

and with the following pair of means: 

X1;X2ð Þ ¼
ðμ 1ð Þ

1 ; μ 1ð Þ
2 Þfor test

μ 2ð Þ
1 ; μ 2ð Þ

2

� �
for control

(

Given n1 pairs of observations X 1ð Þ
1j ;X

1ð Þ
2j

� �
, j ¼ 1; . . . ; n1; for the test group, and n2 pairs of 

observations X 2ð Þ
1j ;X

2ð Þ
2j

� �
, j ¼ 1; . . . ; n2; for the control group, our problem is to test the intersection 

H0 of the following two one-sided null hypotheses: 

H0 ¼ H01 : μ 1ð Þ
1 � μ 2ð Þ

1

n o
\ H02 : μ 1ð Þ

2 � μ 2ð Þ
2

n o
;

against the union H1 of one-sided alternative hypotheses: 

H1 ¼ H11 : μ 1ð Þ
1 μ 2ð Þ

1

n o
[ H12 : μ 1ð Þ

2 μ 2ð Þ
2

n o
;

or the intersection H0 of the following two null hypotheses: 

H0 ¼ H01 : μ 1ð Þ
1 ¼ μ 2ð Þ

1

n o
\ H02 : μ 1ð Þ

2 ¼ μ 2ð Þ
2

n o
;

against the union H1 of two-sided alternative hypotheses: 

H1 ¼ H11 : μ 1ð Þ
1 �μ 2ð Þ

1

n o
[ H12 : μ 1ð Þ

2 �μ 2ð Þ
2

n o
;

subject to a control of the type-1 error rate at α.
Note that for the one-sided testing problem, the least favorable configurartion, i.e., the point in the 

parameter space of H0 for which type-1 error is maximized is μ 1ð Þ
1 ¼ μ 2ð Þ

1

n o
\ μ 1ð Þ

2 ¼ μ 2ð Þ
2

n o
. Therefore 

in the one-sided testing problem, we can control type-1 error if we define and test the null hypotheses 
exactly as in the two-sided testing problem, i.e., 

H0 ¼ H01 : μ 1ð Þ
1 ¼ μ 2ð Þ

1

n o
\ H02 : μ 1ð Þ

2 ¼ μ 2ð Þ
2

n o

Let 

T1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2

n1 þ n2

r �X 1ð Þ
1 �

�X 2ð Þ
1

� �

S1
andT2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2

n1 þ n2

r �X 1ð Þ
2 �

�X 2ð Þ
2

� �

S2
;

where _X kð Þ
i ¼

1
nk

Pnk

j� 1
X kð Þ

ij is the sample mean corresponding to μ kð Þ
i , for i ¼ 1; 2; k ¼ 1; 2, and 
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S2
1 ¼

1
n � 2

X2

k¼1

Xnk

j¼1
X kð Þ

ij �
_X kð Þ

i

� �2
;

with n ¼ n1 þ n2, is the pooled sample variance corresponding to Xi, for i ¼ 1; 2. These are the 
standard Student’s tstatistics that are used to marginally test the corresponding null hypotheses and 
form the basic ingredients in the development of traditional intersection or global tests, like 
Bonferroni, Simes (1986), and others, that ignore an explicit use of the correlation between X1 and 
X2 or its estimate in their constructions.

We seek to improve the Bonferroni test by adapting it to the correlation between X1 and X2 through 
r ¼ S12=S1S2, with

S12 ¼
1

n� 2
P2

k¼1

Pnk

j¼1
X kð Þ

1j �
�X kð Þ

1

� �
X kð Þ

2j �
�X kð Þ

2

� �
.

the pooled sample correlation between X1 and X2. More specifically, we attempt to find a critical 
value c1α rð Þ, depending on r, such that 

PrH0 max T1;T2ð Þ � c1α rð Þf g � 1 � α; (2:1) 

or c2α rð Þ such that 

PrH0 max T1j j; T2j jð Þ � c2α rð Þf g � 1 � α; (2:2) 

depending on whether H0 is tested against a one-sided alternative H1 : μ 1ð Þ
1 > μ 2ð Þ

1

n o
[ μ 1ð Þ

2 > μ 2ð Þ
2

n o

or against a two-sided alternative

H1 : μ 1ð Þ
1 �μ 2ð Þ

1

n o
[ μ 1ð Þ

2 �μ 2ð Þ
2

n o
.

Towards finding c1α rð Þ and c2α rð Þ, we first note the following distributional results: 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1n2

n1 þ n2

r
�X 1ð Þ

1 �
�X 2ð Þ

1
�X 1ð Þ

2 �
�X 2ð Þ

2

 !

and n � 2ð Þ
S2

1 S12
S12 S2

2

� �

independently distributed as N2 μ;�ð Þ and W2 n � 2;�ð Þ; respectively, with 

which equals 0
0

� �

under 
H0: From these results, we obtain the theorem below: 

μ ¼
ffiffiffiffiffiffiffiffiffi
n1n2

n1þn2

q μ 1ð Þ
1 � μ 2ð Þ

1

μ 1ð Þ
2 � μ 2ð Þ

2

 !

;

Theorem 1. The following results hold:
The probability PrH0 maxðT1;T2Þ � cð Þ depends on the nuisance parameters, ρ; σ1; and σ2 only 

through ρ and is strictly increasing in ρ, for any fixed � 1< c<1.,
The probability PrH0 maxð T1j j; T2j j � cð Þ depends on the nuisance parameters, ρ; σ1; and σ2only 

through ρj j and is strictly increasing in ρj j, for any fixed 0< c1; c2 <1.

This theorem, a proof of which is presented in Appendix 1, facilitates the calculation of c1α rð Þ and 
c2α rð Þ using a slight modification of the confidence interval approach of Berger and Boos (1994). 
Specifically, let Δ1 c; ρð Þ ¼ PrH0 max T1;T2ð Þ � cð Þ, and ρ̂1;β rð Þ be a lower confidence limit for ρ based 
on r with confidence coefficient 1 � β. Then, since 

Δ1 c; ρð Þ � Δ1 c; � 1ð Þ ¼ 2PrH0 T1 � cð Þ � 1;

and Δ1 c; ρð Þ is strictly increasing in ρ 2 � 1; 1ð Þ, we have
Δ1 c; ρð Þ =E Δ1 c; ρð ÞI ρ � ρ̂1;β rð Þ

� �n o
þ E Δ1 c; ρð ÞI ρ< ρ̂1;β rð Þ

� �n o
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� E Δ1 c; ρ̂1;β rð Þ
� �

I ρ � ρ̂1;β rð Þ
� �n o

þ 2PrH0 T1 � cð Þ � 1½ �PrH0 ρ< ρ̂1;β rð Þ
� �

= 

E Δ1 c; ρ̂1;β rð Þ
� �

I ρ � ρ̂1;β rð Þ
� �n o

þ β 2PrH0 T1 � cð Þ � 1½ �:

The desired c;c1α rð Þ guaranteeing (2.1) then can be obtained by equating Δ1 c; ρ̂1;β rð Þ
� �

to 
1 � α � β 2PrH0 T1 � cð Þ � 1½ �f g= 1 � βð Þ, that is, by solving the equation below for c, for any 

fixed α; β; rð Þ: 

G1;β c; rð Þ ¼ 1 � βð ÞΔ1 c; ρ̂1;β rð Þ
� �

þ β 2PrH0 T1 � cð Þ � 1½ � ¼ 1 � α: (2:3) 

It is worth noting that G1;β c; rð Þ � 2PrH0 T1 � cð Þ � 1, and so c1α rð Þ is less than or equal to the 
Bonferroni critical value c satisfying 2PrH0 T1 � cð Þ ¼ 2 � α. In other words, the resulting modifica-

tion of the Bonferroni test for testing H0 against H1 : μ 1ð Þ
1 > μ 2ð Þ

1

n o
[ μ 1ð Þ

2 > μ 2ð Þ
2

n o
will have a larger 

rejection region.
The c2α satisfying (2.2) can be obtained in the same manner by using the fact that 

Δ2 c; ρj jð Þ ¼ Pr max T1j j; T2j jð Þ � cð Þ � Δ2 c; ρj j ¼ 0ð Þ ¼ Pr2 T1j j< cð Þ; andΔ2 c; ρj jð Þ is strictly increas-
ing in ρj j, and utilizing a lower confidence limit ρ̂j j2;β rj jð Þ of ρj j based on rj j with confidence coefficient 
1 � β. More specifically, c;c2α can be obtained by solving the equation below for c, for any 
fixed α; β; rð Þ: 

G2;β c; rð Þ ¼ 1 � βð ÞΔ2 c; ρ̂j j2;β rj jð Þ
� �

þ βPr2
H0

T1j j< cð Þ ¼ 1 � α: (2:4) 

Since c2α is smaller than the Bonferonni critical value csatisfying Pr2
H0

T1j j< cð Þ ¼ 1 � α for testing H0 

against H1 : μ 1ð Þ
1 �μ 2ð Þ

1

n o
[ μ 1ð Þ

2 �μ 2ð Þ
2

n o
, our modification of the Bonferroni test will have a larger 

rejection region, and hence more power, than the usual Bonferroni test.

3. Data-adaptive critical values

This section describes the process of calculating G1;β c; rð Þ and G2;β c; rð Þ, given β; from the pooled 
sample covariance matrix with n � 2 degrees of freedom (d.f.). A pseudocode of these calculations 
appears in Appendix 2. Subsequently, we derive the critical values c1α rð Þ and c2α rð Þ by solving the 
corresponding equations (2.3) and (2.4) for c. The calculation of G1;β c; rð Þ and G2;β c; rð Þ involves 
expressing the probabilities Δ1 c; ρð Þ and Δ2 c; ρj jð Þ and estimating them by substituting ρ and |ρ| with 
their respective 1 � β lower confidence limit ρ̂1;β rð Þ and cρj j2;β rð Þ:

3.1. Expressions of Δ1 c; ρð Þ and Δ2 c; ρj jð Þ

Let Φρ be the cumulative distribution function of ðZ1;Z2) having standard bivariate normal distribu-
tion with correlation ρ. Then, from the above-mentioned joint distribution of 

�X 1ð Þ
1 �

�X 2ð Þ
1 ; �X 1ð Þ

2 �
�X 2ð Þ

2

� �
and S2

1; S2
2; S12

� �
under H0, we see that 

Δ1 c; ρð Þ ¼ PrH0 Z1 � c
S1

σ1
;Z2 � c

s2

σ2

� �

¼ ò
1

0
ò
1

0
Φρ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1= n � 2ð Þ

p
; c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2= n � 2ð Þ

p� �
g w1;w2ð Þdw1dw2; (3:1) 

and 
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Δ2 c; ρj jð Þ ¼ ò
1

0
ò
1

0
gðw1;w2Þ ½Φ ρj j c

ffiffiffiffiffiffiffiffiffiffiffi
w1

n � 2

r

; c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 n � 2ð Þ

p
� �

�

2 Φ ρj j � c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1= n � 2ð Þ

p
; c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2= n � 2ð Þ

p� �
þ

Φ ρj j � c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1= n � 2ð Þ

p
; � c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2= n � 2ð Þ

p� �
�dw1dw2 

,
(3.2)

where g w1;w2ð Þ is the density of W1;W2ð Þ, the diagonal elements of a 2� 2 Wishart matrix with 

n � 2 d.f. and covariance matrix 1 ρ
ρ 1

� �

: Since 

W1;W2ð Þ¼
d W1; 1 � ρ2� �

W3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ρ2ð Þ

p
Z þ ρ

ffiffiffiffiffiffiffi
W1
p� �2

� �� �

;

with W1, W3, and Z being distributed independently as χ2
n� 2, χ2

n� 3 and N 0; 1ð Þ, respectively (see, e.g., 
Odell and Feiveson (1966)), we see that g w1;w2ð Þ can be expressed as follows: 

g w1;w2ð Þ ¼ gW1 w1ð Þ

ðð

A W1;W2ð Þ

gW3 w3ð Þφ zð Þdw3dz;

where gW1 , gW3 and φ zð Þ are the densities of χ2
n� 2, χ2

n� 3 and N 0; 1ð Þ, respectively, and 

A w1;w2ð Þ ¼ w3; zð Þ : 1 � ρ2� �
w3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � ρ2

p
Þz þ ρ

ffiffiffiffiffiffi
w1
p� �2

¼ w2

� �

.

3.2. Lower confidence limits bρ1;β rð Þ andj bρj2;β rð Þ:

Although these confidence limits can be approximated by using Fisher’s transformation of r, we 
consider calculating them exactly using the following distribution of r (from sample covariance matrix 
with n � 2 d.f.), obtained from Hotelling (1953):

fρ rð Þ ¼ n� 3ð ÞΓ n� 2ð Þ 1� ρ2ð Þ
n� 2

2 1� r2ð Þ
n� 5

2
ffiffiffiffi
2π
p

Γ n� 3
2ð Þ 1� ρrð Þ

n� 5
2

2F1
1
2 ;

1
2 ; 2n� 3

2 ;
ρrþ1

2

� �
, 

where Γ is the gamma function and 2F1is the Gaussian hypergeometric function: 

2F1 a; b; c; zð Þ = 
P1

n¼0

að Þn bð Þn
cð Þn

zn

n!
, with qð Þn ¼

1; n ¼ 0
q qþ 1ð Þ � � � qþ n � 1ð Þ; n > 0:

�

A 1 � β lower confidence limit ρ̂1;β rð Þ for ρ is calculated by solving the following equation for ρ̂:
Fρ̂ rð Þ ¼ ò

r

� 1
fρ̂ xð Þdx = 1 � β. (3.3)

Similarly, a 1 � β lower confidence limit ρ̂j j2;β rj jð Þ for ρj j can be calculated by solving the following 
equation for cρj j:

Fρ̂ rj jð Þ ¼ ò

rj j

0
f ρ̂j j xð Þdx =1 � β, (3.4)

wheref ρj j xð Þ ¼ fρ xð Þ þ fρ � xð Þ; 0 � x � 1

3.3. Calculation of c1α and c2α

We estimate Δ1 c; ρð Þ, given ðc,βÞ by replacing ρ with its lower confidence limit ρ̂1;β rð Þto obtain

6 S. SARKAR ET AL.



Table 1. One-sided critical values (α= 0.025; β = 0.05 for n < 1,000, β = 0.01 for n ≥ 1,000).

r

Sample Size, n (n1:n2)

10 
(5:5)

20 
(10:10)

30 
(15:15)

50 
(25:25)

80 
(40:40)

150 
(75:75)

500 
(250:250)

2,000 
(1,000:1,000)

−1 0.01250 0.01250 0.01250 0.01250 0.01250 0.01250 0.01250 0.01250
−0.3 0.01250 0.01250 0.01250 0.01250 0.01250 0.0125 0.01250 0.01250
−0.25 0.01250 0.01250 0.01250 0.01250 0.01250 0.0125 0.01250 0.01250
−0.2 0.01250 0.01250 0.01250 0.01250 0.01250 0.0125 0.01251 0.01251
−0.15 0.01250 0.01250 0.01250 0.01250 0.01250 0.01251 0.01251 0.01251
−0.10 0.01250 0.01250 0.01250 0.01250 0.01251 0.01251 0.01252 0.01252
−0.05 0.01250 0.01250 0.01250 0.01251 0.01251 0.01252 0.01253 0.01253
0.0 0.01250 0.01250 0.01251 0.01251 0.01252 0.01253 0.01254 0.01254
0.05 0.01250 0.01251 0.01251 0.01252 0.01253 0.01254 0.01256 0.01256
0.10 0.01250 0.01251 0.01252 0.01253 0.01254 0.01256 0.01259 0.01259
0.15 0.01250 0.01251 0.01252 0.01254 0.01256 0.01258 0.01262 0.01262
0.20 0.01250 0.01252 0.01253 0.01256 0.01258 0.01261 0.01266 0.01267
0.25 0.01251 0.01253 0.01255 0.01258 0.01261 0.01266 0.01272 0.01272
0.30 0.01251 0.01254 0.01257 0.01261 0.01265 0.01271 0.01278 0.01278
0.35 0.01251 0.01256 0.01260 0.01265 0.01271 0.01277 0.01286 0.01286
0.40 0.01252 0.01258 0.01263 0.01271 0.01277 0.01285 0.01296 0.01296
0.45 0.01253 0.01261 0.01268 0.01278 0.01286 0.01295 0.01308 0.01308
0.50 0.01254 0.01266 0.01275 0.01287 0.01297 0.01308 0.01323 0.01323
0.55 0.01256 0.01272 0.01284 0.01298 0.01310 0.01323 0.01341 0.01341
0.60 0.01259 0.01280 0.01295 0.01313 0.01327 0.01343 0.01362 0.01362
0.65 0.01263 0.01292 0.01311 0.01332 0.01349 0.01367 0.01388 0.01389
0.70 0.01269 0.01308 0.01332 0.01358 0.01377 0.01397 0.01421 0.01421
0.75 0.01278 0.01331 0.01360 0.01391 0.01413 0.01435 0.01462 0.01462
0.80 0.01295 0.01365 0.01400 0.01436 0.01461 0.01485 0.01514 0.01514
0.85 0.01323 0.01416 0.01458 0.01499 0.01526 0.01553 0.01583 0.01583
0.90 0.01378 0.01500 0.01549 0.01593 0.01622 0.0165 0.01681 0.01681
0.95 0.01507 0.01657 0.01709 0.01753 0.01781 0.01807 0.01836 0.01836

Table 2. Two-sided critical values (α= 0.05; β = 0.05 for n < 1,000, β = 0.01 for n ≥ 1,000) .

|r|

Sample Size, n (n1:n2)

10 
(5:5)

20 
(10:10)

30 
(15:15)

50 
(25:25)

80 
(40:40)

150 
(75:75)

500 
(250:250)

2,000 
(1,000:1,000)

0.0 0.02530 0.02530 0.02530 0.02530 0.02530 0.02530 0.02530 0.02530
0.05 0.02530 0.02530 0.02530 0.02530 0.02530 0.02530 0.02530 0.02531
0.10 0.02530 0.02530 0.02530 0.02530 0.02530 0.02530 0.02531 0.02533
0.15 0.02530 0.02530 0.02530 0.02530 0.02530 0.02530 0.02533 0.02537
0.20 0.02530 0.02530 0.02530 0.02530 0.02530 0.02533 0.02539 0.02545
0.25 0.02530 0.02530 0.02530 0.02530 0.02532 0.02538 0.02547 0.02555
0.30 0.02530 0.02530 0.02530 0.02532 0.02538 0.02546 0.02559 0.02569
0.35 0.02530 0.02530 0.02530 0.02537 0.02546 0.02557 0.02574 0.02586
0.40 0.02530 0.02530 0.02534 0.02546 0.02557 0.02572 0.02593 0.02608
0.45 0.02530 0.02530 0.02542 0.02558 0.02573 0.02592 0.02617 0.02634
0.50 0.02530 0.02537 0.02553 0.02575 0.02594 0.02616 0.02646 0.02665
0.55 0.02530 0.02548 0.02569 0.02597 0.02621 0.02647 0.02681 0.02703
0.60 0.02530 0.02563 0.02592 0.02627 0.02655 0.02685 0.02724 0.02749
0.65 0.02530 0.02585 0.02622 0.02665 0.02698 0.02733 0.02777 0.02804
0.70 0.02539 0.02617 0.02664 0.02715 0.02754 0.02794 0.02842 0.02872
0.75 0.02559 0.02663 0.02721 0.02782 0.02826 0.02870 0.02924 0.02956
0.80 0.02590 0.02730 0.02801 0.02872 0.02921 0.02971 0.03029 0.03063
0.85 0.02647 0.02833 0.02917 0.02998 0.03053 0.03106 0.03167 0.03202
0.90 0.02756 0.03000 0.03097 0.03186 0.03244 0.03299 0.03362 0.03397
0.95 0.03013 0.03314 0.03418 0.03507 0.03563 0.03615 0.03673 0.03704
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G1;β c; rð Þ = 1 � βð ÞΔ1 c; ρ̂1;β rð Þ
� �

þ β 2PrH0 T1 � cð Þ � 1½ �,
where PrH0 T1 � cð Þ is calculated using the cumulative distribution function of central Student’s 

t with n � 2 d.f. The c1αis then obtained by solving the equation G1;β c; rð Þ ¼ 1 � αfor c.
Similarly, c2α is calculated by estimating Δ2 c; ρj jð Þ, given ðc,βÞ by replacing ρj j with its lower 

confidence limit cρj j2;β rð Þ to obtain 

G2;β c; rð Þ = 1 � βð ÞΔ2 c;cρj j2;β rð Þ
� �

þ βPr2
H0

T1j j � cð Þ, 

where PrH0 jT1j � cð Þ is calculated using the cumulative distribution function of central Student’s 
t with n � 2 d.f. and solving the equation G2;β c; rð Þ ¼ 1 � αfor c.

4. Critical values

Tables 1 and 2 present the critical values of our proposed correlation-adaptive Bonferroni procedures, 
respectively, for one- and two-sided testing problems. For each configuration of sample size and 
observed sample correlation coefficient r, the table entries are the solutions of the process described in 
Section 3 for G1;β c; rð Þ ¼ 1 � α (one-sided tests) and G2;β c; rð Þ ¼ 1 � α(two-sided tests). These solu-
tions were obtained by iteratively changing the critical values and numerically integrating the left- 
hand side of each equation until a solution was found so that the right-hand side of each equation was 
within 0.000001 of 1 � α.

We are providing values for a wide range of observed sample correlation coefficient r or its absolute 
value rj j, depending on whether the testing problem is one- or two-sided, and for some choices of total 
sample size n. For sample sizes below 1000, we have used β ¼ 0.05, while for sample sizes of 1000 and 
above, β ¼ 0.01 was used. We elaborate on these choices in Section 5.

Note that for the two endpoints problem, with a two-sided α ¼ 0:05: or a one-sided α ¼ 0:025, the 
Bonferroni critical values are simply half of their respective α; namely 0.025 (= 0.05/2) and 0.0125 (= 
0.025/2) for the two- or one-sided testing problems, no matter what the sample correlation coefficient 
is. As expected, the newly derived critical values increase as the sample size or the sample correlation 
coefficient increases. This is due to the tighter range of the confidence interval with increased sample 
size, and the decreasing property of the type-1 error rate with increasing population correlation 
(approximately equaling the sample correlation for large sample size). Of note is that the new critical 

Table 3. Power (%) comparison. One-sided α= 0.025.

Sample Size, 
n (n1:n2) Effect sizes ρ Adaptive. Bonferroni Bonferroni Simes Šidák

30 (15:15) 1.3,0 0 87.8 87.8 87.8 87.8
0.5 87.9 87.6 87.6 87.7
0.9 89.7 87.6 87.6 87.7

1.2,0.6 0 86.2 86.2 86.9 86.2
0.5 83.0 82.7 83.2 82.8
0.9 84.1 81.4 81.5 81.5

1.1,1.1 0 93.2 93.1 94.0 93.2
0.5 87.7 87.4 88.6 87.5
0.9 82.6 79.8 82.2 79.9

500 (250:250) 0.3,0 0 86.7 86.7 86.7 86.7
0.5 87.1 86.6 86.8 86.6
0.9 88.9 86.5 86.5 86.6

0.28,0.14 0 85.8 85.7 86.4 85.8
0.5 82.8 82.2 82.7 82.3
0.9 84.1 81.1 81.2 81.2

0.25,0.25 0 91.5 91.4 92.3 91.5
0.5 85.5 84.9 86.0 85.0
0.9 80.5 77.0 79.2 77.1
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values remain close to the corresponding usual Bonferroni critical values when the sample correlation 
is in the range of −1 to 0.

Table 3 displays power comparisons between the correlation adaptive Bonferroni, the standard, non-adaptive 
Bonferroni, Simes, and Šidák procedures. Estimated power calculation was done via 1,000,000 random samples. 
Comparisons were made for a few configurations of effect sizes for the two endpoints, ranging from equal to 
substantially different. For meaningful comparisons, configurations of effect sizes were designed to facilitate 
power comparisons in the range of 80-90%. As expected, the Adaptive Bonferroni has a power advantage over the 
non-adaptive Bonferroni test that increases with sample size and population correlation. The differences are 
noticeable, being in the range from 1% to 4%. Šidák’s test gives only a minor improvement over Bonferroni. 
Simes’s test has its best advantage for effect sizes that are equal. In those cases, its advantage over the adaptive 
Bonferroni can be in the range of 0.5–1%. On the other hand, when the effect sizes are different, the adaptive 
Bonferroni has an advantage that can be in the range of 2–2.5%. As we stated before, and elaborated in the next 
section, the Simes’ test has not been shown to control type-1 error for the testing problem addressed here, namely 
when the t-statistics are constructed with separate estimates of the population standard deviations, and therefore 
its validity for this problem is not known.

5. Discussion and concluding remarks

The multiplicity problem addressed in this paper is quite common in clinical trial settings where two 
treatments are compared on two primary endpoints and evidence of superiority on one of these 
endpoints is sufficient to obtain regulatory marketing approval. Current solutions to this problem in 
terms of controlling the type-1 error rate are typically based on dependency-free methodologies (such 
as Bonferroni test and its various extensions) or on those that only qualitatively utilize positive 
dependencies (such as Šidák’s (1967) and Simes (1986) tests and their extensions). However, it is 
generally understood that test procedures that utilize more data-embedded information, such as 
dependencies among variables, tend to be more powerful. Our proposed data-adaptive version of 
the Bonferroni method utilizing information through the sample correlation is such a procedure. It is 
indeed more powerful than its non-adaptive counterpart, as numerically verified.

It is important to note that Simes’ and Šidák’s inequalities were not proven to hold in the testing problem 
described here and therefore the validity of multiple testing procedures based on these two tests is questionable. 
Hochberg and Rom (1995) and Samuel-Cahn (1996) have shown that Simes’ test controls type-1 error when the 
test statistics are jointly bivariate normal for two-sided testing, and with non-negative correlation for one-sided 
testing. Sarkar and Chang (1997), and Sarkar (1998) have obtained similar results when the test statistics are 
jointly bivariate t whose marginal t-statistics have been constructed with the same estimate of the standard 
deviation (sometimes referred to as ‘the standard bivariate t of the Dunnett type’). For the problem at hand, the 
marginal t-statistics do not share the same estimate of the standard deviation, and therefore, the resulting 
bivariate t-distribution is not of the Dunnett type. It is unknown whether the results proven in Sarkar and 
Chang (1997), and Sarkar (1998) hold for this problem. Moreover, it has been shown in Hochberg and Rom 
(1995), and Samuel-Cahn (1996) that Simes’ test has an inflated type-1 error for negatively correlated normal 
statistics with one-sided testing; and since the value of the population correlation is rarely known and can be 
negative, the validity of the Sime’s test in the testing problem described here is questionable.

The arguments above regarding one-sided testing also apply to Šidák’s inequality. Nevertheless, the results 
obtained in this paper allow us to state the following: 1. The Adaptive Bonferroni method is never less powerful 
than Šidák’s method for two-sided testing since our method allows us to replace the unknown correlation with 
a less conservative correlation resulting from the use of the confidence interval for the unknown population 
correlation. If the confidence interval does not cover zero, then our critical values will be less conservative than 
Šidák’s critical values, otherwise, they will be the same. By implication, we have proven that 1: Šidák’s inequality 
holds for the absolute values of two t statistics whose joint distribution is of the form described here (the standard 
deviations have separate estimates), an important result on its own; and 2: For the one-sided testing problem, it is 
generally (but not always) true that for positively correlated statistics, our method will result in less conservative 
critical values than those obtained by assuming that the correlation is zero (independence in the normal case) as is 
done by Šidák. However, Šidák’s method can inflate type-1 error if the population correlation is negative, while 
our method is valid for that case.
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One might consider using Hotelling’s T2 to test the global null hypothesis for our setting. However, the 
resulting test does not possess the “Consonance” property of Gabriel (1969); that is, following the 
rejection of the global null hypothesis, the rejection of any of the individual hypotheses is not 
guaranteed, and they must each be tested and rejected by their own a α-level test. This may lead to 
loss of power for the rejection of any of the individual null hypotheses. On the other hand, the 
Bonferroni as well as our adaptive version of it, being in the class of Union Intersection (UI) tests, are 
consonant, and therefore do allow for the rejection of at least one individual null hypothesis whenever 
the global null hypothesis is rejected. A UI test allows for the allocation of different portions of type-1 
the error to the marginal Student’s t-test statistics, thereby adapting the test to the possible difference 
in effect sizes between the two endpoints. Also, it is amenable to its applications as a stepwise 
procedure, starting with the global test and, depending on the rejection of the global null hypothesis 
(and so at least one individual hypothesis), allocating the full nominal type-1 error to the other 
hypotheses, thereby increasing the power to reject the second hypothesis.

The monotonicity of the type I error rate for Bonferroni global testing involving one-sided (or 
two-sided) tests with respect to the population correlation (or the absolute value of the population 
correlation) is an important theoretical result in the process of carrying out the main maximization 
step in the Berger and Boos (1994) approach without computations. While this property is known in 
the literature for multivariate (or absolute-valued multivariate) normal random variables, they are 
not available for the joint distribution of the marginalt’s (or absolute-valued marginal t’s) in 
Hotelling’s T2, and so these results proven in the bivariate case in this paper are important in 
their own right. Tamhane et al. (2012) have made use of a similar monotonicity property for 
normally distributed test statistics, although for a different problem, in the aforementioned step of 
the Berger and Boos (1994) approach without computations. However, they verified this property 
numerically.

The proposed correlation-adaptive Bonferroni method for global testing can be used to develop 
a Holm-type stepdown method for simultaneous testing of the individual null hypotheses in the 
present context. For instance, let us consider the one-sided testing problem. With H 01ð Þ and H 02ð Þ
denoting the null hypotheses corresponding to min T1;T2ð Þ and max T1;T2ð Þ, respectively, we can 
describe this so-called correlation-adaptive Holm method controlling the (familywise) type-1 error 
rate at α as follows:

Do not reject H 01ð Þor H 02ð Þ if max T1;T2ð Þ � c1α rð Þ
Do not reject H 01ð Þ but reject H 02ð Þ if min T1;T2ð Þ � tα;n� 2;max T1;T2ð Þ > c1α rð Þ
Reject both H 01ð Þand H 02ð Þ if min T1;T2ð Þ> tα;n� 2;max T1;T2ð Þ > c1α rð Þ
A correlation-adaptive Holm method for the two-sided testing problem can be similarly proposed 

in terms of min T1j j; T2j jð Þ; max T1j j; T2j jð Þ and c2α rð Þ.
The correlation-adaptive Bonferroni methodology can be further extended to more than two 

endpoints, although a difficulty arises due to the increased dimensionality. One may need to resort 
to some efficient Monte-Carlo numerical integration methods to address the testing of more than two 
endpoints. This extension will also require some additional theoretical results. A more pragmatic 
approach to reduce the dimensionality problem is to use the bivariate results obtained here and to 
devise an upper bound for the case of more than two endpoints. The first method can readily be 
described for the case of three endpoints as follows (one-sided bounds are described here with obvious 
changes to two-sided testing): 

Pr [
3

i¼1
fTi � cg

� �

¼
X3

i¼1
Pr Ti � cð Þ �

X3

i;j ijð Þ¼1

Pr Ti � cf g\ Tj�cf g
� �

þ Pr \
3

i¼1
Tj � c
� �

� �

,
and since 
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Pr \3
i¼1 Tj � c
� �� �

� min
i�j

Pr Ti � cf g\ Tj � c
� �� �

:

! Pr [3
i¼1fTi � cg

� �
�
X3

i¼1
Pr Ti � cð Þ � max

i2 1;2;3f g

X

j�i
Pr Ti � cf g\ Tj � c

� �� �
(2:5) 

This bound relies on the univariate and bivariate probabilities only. We can then replace each of the 
bivariate probabilities on the righthand side of (2.5) using the lower confidence limit of the correlation 
between the respective statistics and apply the Berger and Boos (1994) method as was done for the 
two-endpoint problem. Two types of extensions of (2.5) can be made for more than three endpoints: 
The first is based on extending (2.5) to k endpoints using Kounias (1968) inequality: 

Pr [k
i¼1fTi � cg

� �
�
Xk

i¼1
Pr Ti � cð Þ � max

i2 1;...;kf g

X

j�i
Pr Ti � cf g\ Tj � c

� �� �
; (2:6) 

and using a lower confidence bound for each (bivariate) correlation and the Berger and Boos (1994) 
method in (2.5).

A second approach is to utilize the closure principle of Marcus et al. (1976) to test all intersection 
hypotheses of cardinality j j 2 1; 2; . . . kf gð Þ at level jα=k. In this approach, any intersection hypothesis 
H of cardinality i, can be rejected at level iα=k by testing and rejecting all intersection hypotheses of 
cardinality jð> iÞ implying H at leveljα=k. Applying this idea recursively to testing k endpoints, the 
following procedure will control type-1 error rate:

Reject any hypothesis Hj j ¼ 1; . . . ; kð Þ corresponding to endpoint j; provided all intersection 
hypotheses of cardinality 3 implying Hj have been tested and rejected at level 3α=k:We use (2.5) to test 
all hypotheses of cardinality 3.

The tightness (i.e., how far the above bounds are from the exact type-1 error) of the above 
approaches depends on the correlation matrix among the k endpoints which in turn determines 
whether higher dimensional probabilities are diminishingly small compared to the two-dimensional 
probabilities. Our preliminary evaluation suggests that for small to moderate correlations, the uni-
variate and bivariate probabilities do provide a tight upper bound on type-1 error. Further work is 
currently undertaken to examine the above bounds. As an example of this point, consider a setting 
with three endpoints, and sample sizes of 500 in each of two groups, with all observed sample 
correlations being 0.5. With a one-sided type-1 error of 0.025, the Bonferroni test will use a critical 
value of 0.025/3 =0.0083 for testing each of the three hypotheses. Applying (2.5) with a lower 1 � β 
ðβ=0.0001) confidence limit and the Berger and Boos (1994) method, we get a critical value of 0.00867 
which is a slight improvement over the Bonferroni test. If we were to consider the asymptotic critical 
value (n!1Þ using a three-dimensional normal with all correlations equal to 0.5 to approximate the 
joint distribution of the test statistics, we would use a critical value of 0.0095 (estimated using a Monte 
Carlo simulation) making our critical value 0.00867 slightly conservative. Note that the use of the 
asymptotic critical value may cause some type-1 error inflation due to the use of the normal 
distribution instead of the t-distribution, and the use of the observed correlations to replace the 
unknown correlations. Thus, the conservatism of our critical value is no more than the difference 
derived from the asymptotic distribution, and practically can be much lower.

A similar problem with observed sample correlations of 0.9 gives a critical value of 0.01205 from 
our method while the Bonferroni test remains unchanged with a critical value of 0.0083. Again, 
considering the asymptotic distribution as a three-dimensional normal with all correlations being 0.9, 
the critical value is 0.0145 (estimated from a Monte Carlo simulation), making our method with 
a critical value of 0.01205 slightly conservative but much less conservative than the Bonferroni test.

The method described in this paper can be extended more easily to situations where, following the 
rejection of either of the primary endpoints, it is desired to test secondary endpoints. The dependen-
cies between the primary and secondary endpoints can then be readily incorporated using the 
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methodology described in this article to devise an improved sequential testing.
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